
Supplementary Material:
Assignment-Space-based Multi-Object Tracking and Segmentation

In this section, we provide additional details and anal-
ysis of the proposed approach for Multi-Object Tracking
and Segmentation. In Sec. A we elaborate on the param-
eter learning procedure for MOTS that has been discussed
in Sec. 3.3. In Sec. B, we compare the time-complexities
of methods working in the detection space with our method
operating in the assignment space. In Sec. C, we discuss
experimental details: datasets (Sec. C.1), additional abla-
tion study on KITTI-MOTS (Sec. C.2) and some additional
qualitative results (Sec. C.3).

Fig. 6 visualizes the tracks formed by our method across
multiple video frames from 4 video sequences of the KITTI-
MOTS validation dataset. The different colors represent dif-
ferent objects in the respective videos. In the image, x and
y are the horizontal and vertical axes of each video frame
and t represents the progress of the respective videos from
the frame at time t1 to the frame at time T .

A. Learning of Parameters
In this section we detail the parameter learning proce-

dure that has been discussed in Sec. 3.3. Eq. (6) shows
the learning objective. We minimize this objective w.r.t. the
tracking parameters (λ) and the deep-net parameters (θ). In
Sec. 4, we evaluate how the approach described in Sec. 3
performs.

In all our experiments (described in Sec. 4), “Ours” rep-
resents the approach where we optimize objective Eq. (6)
only with respect to λ. For Tab. 2 and Tab. 3, we learn λ
on the KITTI-MOTS training dataset using stochastic gra-
dient descent with a learning rate of 0.05 for 50 epochs.
The optimal λ = [λiou, λapp, λdist, λiou,2, λapp,2, λdist,2]
learnt for cars, on PointTrack [58] detections are
[−6.93, 4.96, 0.47,−1.80,−0.45, 0.10].

“Ours (JT)” in Tab. 1, and Tab. 3 represents the ap-
proach where we optimize the objective given in Eq. (6)
with respect to both λ and θ. Here λ is first trained
for 40 epochs using stochastic gradient descent with a
learning rate of 0.05. θ is initialized with the weights from
the pre-trained detection-segmentation network (MaskR-
CNN [14] and PointTrack [58] respectively for pedestrians
and cars). MaskRCNN [14] is previously trained on the
COCO and Cityscapes datasets. We use the pre-trained
weights from https://dl.fbaipublicfiles.
com/detectron2/Misc/cascade_mask_rcnn_
X_152_32x8d_FPN_IN5k_gn_dconv/18131413/
model_0039999_e76410.pkl. Afterwards, we
use the refinement net [29] to improve mask quality, a
procedure used in https://motchallenge.net/
workshops/bmtt2020/tracking.html.

For PointTrack [58], we use the SpatialEmbedding Net-
work [35] trained on the KINS dataset and fine-tuned on
the KITTI-MOTS dataset as described in [58]. We jointly
train θ and λ on the KITTI-MOTS training dataset using
our learning objective (Eq. (6)) for 10 epochs. We use
stochastic gradient descent with a learning rate of 10−6 for
θ and 0.05 for λ. Note that SpatialEmbedding [35] or Point-
Track [58] networks are not available for pedestrians, so we
use MaskRCNN for pedestrians instead.
Training data T . As discussed in Sec. 3.3, we are given a
set of detectionsD and our task is to find (λ, θ) such that the
learning objective (Eq. (6)) is minimized. Our training set
is T = {(x, yGT)}, as mentioned in Sec. 3.3, where x is a
video clip of T frames and yGT = (y2GT, . . . , y

T
GT) denotes a

sequence of elements ytGT ∈ Yt that refer to the ground truth
assignment atytGT

of objects Dt−1 and Dt between frames
t− 1 and t. In order to construct atytGT

from given detections
Dt−1 and Dt for frames t − 1 and t, we first associate the
ground truth detections to our given detections Dt based
on mask overlap. Following this, we find the ground truth
assignment matrix atytGT

.

B. Time Complexity Analysis

In this section we discuss the time complexities of a typi-
cal detection-space based network flow method discussed in
Sec. 2 and our assignment-space based approach. For a to-
tal ofN objects across T video frames, the time-complexity
of a general network flow approach (e.g., [59]) in the detec-
tion space is at least O(TN3). This is because we find N
best paths, and optimizing for one best path for T frames
has a complexity of O(TN2). The complexity is higher if
the track hypotheses depend on locations, as seen in Multi-
Hypothesis Tracking (MHT) discussed in Sec. 2. If n is the
number of objects in a single frame (for simplicity, let’s as-
sume n is constant across frames), the complexity of our
assignment-space based method is Kn3T for K-best as-
signments per frame-pair. The Hungarian-Murty [34] al-
gorithm (O(Kn3)) is performed for T − 1 frame pairs, and
a single best path (O(K2T )) is obtained afterwards. The
total complexity is O(K2T + Kn3T ) = O(K2n3T ). For
us K ≤ 20. Note that n = N only when all objects in the
video appear in all frames. Usually, n � N making the
assignment space more efficient.

Note that many network-flow based methods in the de-
tection space (discussed in Sec. 2) use additional approx-
imations to prune the detection-space, i.e., to reduce the
complexity. For the assignment space, we don’t use addi-
tional approximations beyond focusing on the K best as-
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Figure 6. The tracks evaluated by our method as discussed in Sec. 3 across video frames for 4 different sequences of the KITTI-MOTS
validation dataset. The different colors represent different objects. x and y are the horizontal and vertical axes of each video frame and t
represents the progress of video frames from time t1 to time T .

signments. The method optimizes for a single path. It is
hence possible to optimize even for a large number of tem-
poral steps T . In our experiments, T refers to all the frames
in a given video.

C. Additional Experiments
In this section, we provide additional analysis and de-

tails to support the results discussed in Sec. 4. In Sec. C.1,
we discuss the datasets used to study the approach on the
MOTS and MOT tasks. In Sec. C.2 and Sec. C.3 we dis-
cuss some additional ablation studies on the KITTI-MOTS
dataset and provide some qualitative results.

C.1. Datasets

KITTI-MOTS: The KITTI dataset [12] contains sequences
of traffic scenes captured from a moving car. For the task
of MOTS, Voigtlaender et al. [54] created pixel-level mask
annotations for every frame for 21 video sequences from
the KITTI training data. The annotations are for cars and
pedestrians. The 21 training sequences from KITTI are
split into training and validation sets of the KITTI-MOTS
dataset. The split balances the number of cars and pedestri-
ans roughly equally across the training and validation sets.
More specifically, there are 12 training and 9 validation se-

quences in the KITTI-MOTS dataset, consisting of 5, 027
and 2, 981 frames, 99 and 66 distinct pedestrian IDs and
431 and 151 distinct car IDs respectively.
MOTSChallenge: This data consists of 4 out of 7
sequences of pedestrians in crowded scenes from the
MOTChallenge [31] training data. Voigtlaender et al. [54]
provide pixel-level annotations for each frame on all 4 se-
quences for a total of 2, 862 frames in which there are 288
distinct pedestrian IDs. This is a particularly challenging
dataset due to heavy occlusions.
MOT17: MOT17 is a MOTChallenge tracking benchmark
consisting of challenging pedestrian tracking sequences,
with frequent occlusions and crowded scenes. They contain
sequences with varying viewing angle, size and number of
objects, camera motion and frame rate. Note that although
MOT20 is more recent, MOT17 is more widely used; there
are many more MOT17 submissions on the leaderboard.
We test our approach on MOT17 using the detections pro-
vided by the MOTChallenge to ensure a fair comparison
with other MOT batch-methods.

C.2. Additional Ablation Study on KITTI-MOTS

In Tab. 3, Tab. 4 and Tab. 5, we analyze the effects of
different parameters and components on our tracking ap-



Figure 7. Two difficult cases where our method works well. The first 3 and the last 3 rows each show a sequence of 15 video frames placed
one after the other. The first 3 rows represent a sequence of video frames showing a few occluded cars. The car marked with green boxes
in the first and last frames is successfully tracked across all the frames, despite heavy occlusion from the large red car. A similar situation
is observed in the last 3 rows. The person marked with the green box is tracked successfully after multiple video frames.

proach. Tab. 8 provides additional analysis. We study the
effects of using bounding box based (as opposed to mask-
based) intersection over union (IoU) in fiou and fiou,2 as de-
scribed in Eq. (1) and Eq. (4). This is represented by “Ours
(BB+WL)”. “WL” represents the ‘without long range’ con-
figuration as described in the ablation study of Sec. 4.2.
Specifically, this refers to the configuration without the long
range assignments described in Sec. 3.4. We see that mask-
based IoU (“Ours (WL)”) performs better than bounding
box based IoU at preserving the respective identities of ob-
jects. For mask-based IoU (“Ours (WL)”), the HOTA score
is 81.3% as compared to only 79.2% for bounding-box-

based IoU (“Ours (BB+WL)”). This establishes the impor-
tance of using segmentations for tracking. We also study the
effects of the different modalities used in the long range as-
signments as described in Sec. 3.4. “Ours (LR: Dist)” repre-
sents the configuration where we only use the Euclidean dis-
tance between the bounding box centers for the long range
assignments (Sec. 3.4). “Ours (LR: App)” represents the
configuration where we only use the Euclidean distance be-
tween the appearance feature vectors for long range assign-
ments (Sec. 3.4). We notice that the performance remains
unchanged if we remove distance between the bounding box
centers as a modality for long range assignments. This indi-



Method Dets. HOTA DetA AssA LocA IDF1 sMOTSA IDS↓
Ours(BB+WL) Pt. [58] 79.2 85.6 74.0 91.1 81.4 84.0 145

Ours (WL) Pt. [58] 81.3 85.6 77.8 91.1 85.3 84.9 77
Ours (LR:Dist) Pt. [58] 81.7 85.6 78.4 91.1 86.1 84.9 72
Ours (LR:App) Pt. [58] 83.3 85.6 81.6 91.1 89.3 85.4 22

Ours Pt. [58] 83.4 85.6 81.8 91.1 89.4 85.4 22
Table 8. Additional Ablation Study on the KITTI-MOTS valida-
tion set (cars).

cates that the discriminative appearance features, obtained
from PointTrack [58] perform very well in re-identifying
objects after multiple frames. Bounding box center dis-
tances are redundant when using these appearance features.
However, if we do not have access to discriminative appear-
ance features, bounding-box-based long range assignments
help in reducing the identity switches. “Ours (LR: Dist)”
performs better at preserving identities than “Ours (WL)”,
validating this claim. The last row in Tab. 8 (Ours) repre-
sent the configuration where both the distance modality and
appearance modality are used. Here, the values of λdist,lr
and λapp,lr (Sec. 3.4) are 0.05 and 0.98 respectively. These
values have been used for long range assignments in all ex-
periments in this paper.

C.3. Additional Qualitative Results

In this subsection, we provide some examples of diffi-
cult cases where our approach is particularly effective in
preserving the identities of objects.

Fig. 7 shows two cases with heavy occlusion where our
method can effectively preserve the identities of objects.
The first 3 and last 3 rows each show a sequence of 15 video
frames placed one after the other. The first 3 rows represent
a sequence of video frames showing a few occluded cars.
The car marked with a green box in the first and last frames
is successfully tracked across the frames, despite heavy oc-
clusion from the large red car. A similar situation is ob-
served in the last 3 rows. The person marked with the green
box is tracked successfully despite being occluded for mul-
tiple video frames.


