
Supplementary Material: Context-Aware Relative Object Queries to Unify Video
Instance and Panoptic Segmentation

Introduction
In this paper we develop a simple approach to unify the

video segmentation tasks VIS, VPS, and MOTS. The devel-
oped approach propagates what we refer to as ‘context-aware
relative object queries.’

In this supplementary material we provide additional de-
tails, analysis and results to support the points we made in
Sec. 3 of the main paper. Specifically, in Sec. A, we dis-
cuss computation of the relative positional encodings ξrel

which are used to calculate the cross attention matrix αrel,l
τt

described in Eq. (3). We then discuss our training procedure
in Sec. B. In Sec. C, we provide some additional qualitative
results on the OVIS, Youtube-VIS 2021 and Cityscapes-VPS
data and perform additional ablation studies on the OVIS
data. Finally, we provide more implementation details in
Sec. D.

A. Relative Position Encodings
In Sec. 3.3, we introduced the relative positional encod-

ings ξrel,l ∈ RHlW lT×C in Eq. (3). Each row of ξrel,l refers
to the relative distance between two positions of the object
queries and context features. In this section, inspired by [13],
we discuss how to efficiently compute ξrel,l.

The relative positional encodings ξrel,l are calculated
from a learnt set of embeddings Erel ∈ RLmax×C where
Lmax is the maximum possible difference between the in-
dex of any row of the query vectors qprev and the index of
any row in the context-features U l

τt . The relative distance
between the i1-th row of qprev and the i2-th row of U l

τt is
stored in the (N − i1+ i2− 1)-th row in Erel. Since the row
indices of qprev vary from 0 to N − 1 and the row indices of
U l
τt vary from 0 to H lW lT , the maximally possible differ-

ence for layer l is N +H lW lT − 1. Let Hmax ×Wmax be
the maximum resolution of the context-features supported
(such that H l ≤ Hmax and W l ≤ Wmax always), then
Lmax = N +HmaxWmaxT − 1. Intuitively, Erel contains
all the relative distances and acts as a look-up table for ob-
taining ξrel,l, which is then used to calculate the relative
attention matrix as described in Eq. (3).

B. Training
During training we minimize a spatio-temporal set predic-

tion objective. Although our inference is frame-by-frame, we
adopt a clip-based training procedure to introduce temporal
context in the transformer decoder during training.

Specifically, we construct a training sample using 2 clips,
each having T random frames (in ascending order) from
a given video. T refers to the context-length used during
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Figure S1. Hungarian matching. The grey boxes denote the no-
object classes to be ignored during the calculation of Lmatch. These
no-objects don’t vote towards obtaining the optimal matching.

inference (see Sec. 3.4). Given the 2 clips, τa and τb, we
have a set of N predictions and a set of ground truth objects
(padded with a no-object category ∅ to equal the number
of predictions N ). We first match the ground truth objects
with the predictions jointly for both clips by minimizing a
matching cost using Hungarian matching [39]. The optimal
matching is then used to calculate the final objective function.
Importantly, in contrast to prior work, in our setting the
ground truth class labels for the same object may differ for
the two clips τa and τb. For example, an object could be
nascent in τa (∅ class label) and expressed in τb (the actual
object class label). To deal with this, we ignore the matching-
cost for the ∅ object in the corresponding clip. We provide
more details regarding the two step procedure next.
Step 1: Matching. The ground truth of an object correspond-
ing to a clip consists of the object’s class labels and segmenta-
tion masks in that clip. Specifically, each ground truth object
i is represented by two pairs, one for the target class labels
(ciτa , c

i
τb
) and one for the ground truth segmentation masks

(siτa , s
i
τb
). The elements within each pair correspond to the 2

clips τa and τb. The target class labels ciτa and ciτb are scalars
and represent the ith elements of the ground truth class vec-
tors Cgt

τa and Cgt
τb

, where Cgt
τa , C

gt
τb

∈ {∅, 1, . . . ,K}N . Each
target class label belonging to a clip represents the true ob-
ject class if the object has appeared in any of the frames in
the clip, otherwise it is ∅. Note, in our formulation, ciτa and
ciτb may differ even though they represent the same object,
which differs from prior work [7,8]. For instance, they could
be ∅ in one clip if the object is nascent, and the actual object
class in the other clip if the object is expressed. The segmen-
tation masks siτa and siτb represent the ith elements of the
ground truth segmentation mask tensors Sgt

τa and Sgt
τb

, where



Sgt
τa , S

gt
τb

∈ {0, 1}N×T×H×W .
The goal of step 1 is to obtain an optimal matching σ̂ that

minimizes a pair-wise matching cost Lmatch between the
ground truth and predicted objects.

Let us use σ to represent any matching between the
ground truth objects and the predictions. The prediction
σi matched to object i consists of the predicted probabilities
of the ground truth classes, pσi

τa(c
i
τa) and pσi

τb
(ciτb), and the

mask predictions , sσi
τa and sσi

τb
, for clips τa and τb. The pair-

wise matching cost (Lmatch(σi)) between the ground truth
object i and a prediction with index σi consists of classifica-
tion losses, Lcls.

τa (σi) and Lcls.
τb

(σi), and segmentation losses,
Lseg.
τa (σi) and Lseg.

τb
(σi), for each clip. Here, Lcls.

τa (σi) =

− log pσi
τa(c

i
τa) and Lcls.

τb
(σi) = − log pσi

τb
(ciτb) are the clip-

wise cross entropy losses; Lseg.
τa (σi) and Lseg.

τb
(σi) are the

losses corresponding to the clip-wise segmentation masks
of the [prediction, ground truth] pair. We follow [8] to
compute the segmentation losses and classification losses
for individual clips. However, note that in a [8]-like set-
ting, the inter-clip matching cost is straightforwardly given
as Lmatch(σi) = 1{ciτa=ciτb

̸=∅}[Lcls.
τa (σi) + Lseg.

τa (σi) +

Lcls.τb(σi) + Lseg.
τb

(σi)], since ciτa is always equal to ciτb .
Different from this prior work, in our setting, the class labels
for the same object can differ between frames τa and τb.
Hence, the loss Lmatch(σi) has to be modified. We modify
the loss as follows:

Lmatch(σi) = 1{ciτa ̸=∅}[Lcls.
τa (σi) + Lseg.

τa (σi)]

+1{ciτb ̸=∅}[Lcls.
τb

(σi) + Lseg.
τb

(σi)]. (S1)

Intuitively, if the class labels are the same for both frames
(ciτa = ciτb ), a [8]-like setting is directly applicable. We only
keep the class probabilities corresponding to a true object
(no-objects are rejected) while calculating the matching loss.
This is because no-objects shouldn’t vote towards obtain-
ing the best match. For unequal class labels, we adopt the
strategy of ignoring the no-object category: If ciτa = ∅ and
ciτb ̸= ∅, or ciτa ̸= ∅ and ciτb = ∅, i.e., the ground truth
object is expressed in one of the clips and nascent in the
other, we ignore the no-object category in the corresponding
clip. These different scenarios are shown in Fig. S1. We
later show the effectiveness of our modified loss in Sec. C.2
and Tab. S2.

We find the optimal bipartite matching σ̂ that minimizes
Lmatch using the Hungarian algorithm [39].
Step 2: Final objective. Once the best matching σ̂ is ob-
tained, the final training objective is the sum of the classifica-
tion loss and the segmentation loss of the optimally matched
[prediction, ground truth] pairs, but the objects nascent in
both clips aren’t ignored any more in the class loss (this dif-
fers from step 1) and they contribute to the overall training

objective. The final training objective Lobj. reads as follows:

Lobj.(σ̂i) = 1{ciτa ̸=∅}[Lcls.
τa (σ̂i) + Lseg.

τa (σ̂i)]

+1{ciτb ̸=∅}[Lcls.
τb

(σ̂i) + Lseg.
τb

(σ̂i)]

+1{ciτb=ciτb
=∅}[Lcls.

τa (σ̂i) + Lcls.
τb

(σ̂i)]. (S2)

Intuitively, all the class probabilities for N objects are
included in the class loss for the optimal matching, regardless
of whether the objects are nascent in both clips or present in
either. However, note that if an object is nascent in one clip
but expressed in the other, we consider it in the class loss
only for the clip it is expressed in.
Training data. A training sample consists of two randomly
chosen clips τa and τb from a given video in the train-
ing dataset, ensuring that clip τa precedes τb. Each clip
is of length T and, during training, consists of randomly
picked video frames in order. For example, if T = 2, one
training sample consists of 4 frames (2 clips), {τa, τb} =
{(ta0

, ta1
), (tb0 , tb1)}, where ta0

, ta1
, tb0 , tb1 represent the

4 frames and a0 < a1 < b0 < b1. We perform query vector
propagation on τa and τb as described in Sec. 3.2. The query
vectors for τa are obtained using the learnt query embed-
dings and are propagated to obtain the query vectors for τb.
Note, this differs from the inference procedure where the
frames are processed consecutively.

C. Additional Results
In Sec. 4, we show the effectiveness of the proposed ap-

proach on the task of VIS, MOTS and VPS. Importantly, the
approach of query vector propagation can be generalized to a
wide range of tasks. In this section, we provide additional re-
sults and analysis. First we show some additional qualitative
results on the OVIS, Youtube-VIS 2021 and Cityscapes-VPS
data followed by additional ablation studies.

C.1. Additional Qualitative results

Fig. S2 provides qualitative results on 4 videos from the
OVIS data. The first video frame is shown in each example
for reference. The top-left example shows a zebra and a
tiger camouflaged with the environment. The top-right and
bottom-left videos show occluded scenes with elephants and
people (top-right), and rabbits (bottom-left). The bottom-
right video shows people and a bicycle occluding one an-
other. The proposed method generates time-consistent iden-
tities for all objects of interest as seen from these examples.
Additional examples are provided as a mp4 video in the
supplementary zip file.

Fig. S3 shows a qualitative example from the Youtube-
VIS 2021 data, where the proposed method is able to
detect the partially hidden parrot across all frames, but
Mask2Former [9] fails to do so.

We show more qualitative results on the Cityscapes-VPS
dataset for the task of video panoptic segmentation. The
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Figure S2. Video instance segmentation on 4 videos from the OVIS data. t represents the time axis, (x, y) represent the image axes. The first
video frame is shown in each example for reference. Only the instance, overlaid with a unique color that represents the object ID is shown in
subsequent frames. The top-left example shows a zebra and a tiger camouflaged with the environment. The top-right and bottom-left videos
show occluded scenes with elephants and people (top-right), and rabbits (bottom-left). The bottom-right video shows people and a bicycle
occluding one another.

Mask2Former
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Figure S3. Comparison of Mask2Former [9] (top row) with the
proposed method (bottom row) on a video from the Youtube-VIS
2021 data. Mask2Former misses the partially visible parrot (with
pink segmentation mask) in the last 2 frames. The proposed method
is able to detect this parrot (with red segmentation mask) in all the
frames correctly.
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Figure S4. Comparison with the ground truth for the Cityscapes-
VPS data. The proposed method (bottom row) generates temporally
consistent identities of objects which are sometimes missing from
the ground truth (top row).

OVIS YTVIS 2019 YTVIS 2021
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours 25.8 47.9 25.4 46.7 70.4 50.9 43.3 64.9 47.1
Ours (absolute pos.) 25.0 46.5 24.5 46.2 69.9 50.5 42.7 64.1 46.4

Table S1. Effect of relative positional encodings on the VIS
datasets.

bottom row of Fig. S4 shows how the proposed method
generates consistent IDs over time. It is worth noting that
some of the annotations in the Cityscapes-VPS dataset are
not temporally consistent. Fig. S4 shows such an example
where the ground truth (top row) has inconsistent temporal
identities of a car (marked with yellow boxes). The IDs
are reported in the figure. In contrast, the proposed method
(bottom row) preserves the identities of the car over time
(marked with green boxes), improving over the “ground
truth.”

C.2. Additional Ablation Studies

Sec. 4.2 shows ablation studies to establish the importance
of the different components of the proposed approach. We
provide some more ablation studies here. Tab. S1 and Tab. S2
summarize these studies.
Effect of Relative Positional Encodings on VIS Datasets.
In Tab. 6, we showed how the relative positional encodings



AP AP50 AP75
l=0 19.6 43.1 21.3
l=1 25.8 47.9 25.4
l=2 25.5 47.8 25.5
l=3 23.4 44.4 22.6

Ours (w/o ML) 24.1 45.1 22.8
Ours 25.8 47.9 25.4

Table S2. Additional ablation studies (see Sec. C.2).

improve the association accuracy in the MOTS task. We
show the effect of relative positional encodings on the VIS
task in Tab. S1. “Ours (absolute pos.)” refers to using
absolute positional encodings. We observe that the results
improve when using relative encodings (“Ours”), although
the effects aren’t as drastic as the ones reported in Tab. 6.
Number of decoder layers to skip. The first 4 rows in
Tab. S2 show the performance change observed if we use
all the decoder layers (row 1, l = 0), if we skip the first
and start from the second layer (row 2, l = 1), if we skip
the first and second and start from the third layer (row 3,
l = 2), or if we skip the first 3 layers (row 4, l = 3) of the
transformer-decoder respectively while performing query
vector propagation from the previous frame, as discussed in
Sec. 3.2. We observe that skipping the first decoder layer
(and starting from l = 1) or skipping the first 2 decoder
layers (and starting from l = 2) achieves comparable re-
sults. In all experiments in this paper, we skip only the first
decoder-layer and start from l = 1.
Effect of Modified Loss. ‘Ours (w/o ML)’ in Tab. S2 shows
results when a standard bipartite matching is used to obtain
the best matching between [prediction, ground truth] pairs
following [8]. Hence, the loss is not modified as described
in Sec. B. Specifically, the ground truth class labels for an
object corresponding to the 2 training clips τa and τb, are
always equal. If the object appears in any of the frames in τa
and τb, the ground truth class label is the actual object class,
otherwise the class label is ∅. Since the ground truth class
labels corresponding to τa and τb are always equal, no modi-
fication to the standard loss used in [7, 8] is necessary. We
observe a performance drop in AP from 25.8 (our approach,
last row in Tab. S2) to 24.1 without the modified loss.

D. Implementation Details
In this section, we provide the experimental details, model

parameters and the choice of hyper-parameters for all exper-
iments discussed in Sec. 4 and Appendix C. We also discuss
the resources and the licenses of the code-bases and datasets
used in the paper.
Model-Parameters. Tab. S3 compares the total number of
trainable parameters for some of the approaches mentioned
in Tab. 1, while using an R50 backbone. We observe that our
approach uses a lower number of parameters than IDOL [52],

Method IDOL MinVIS SeqFormer Mask2Former-VIS Ours

Params. 43.07M 43.96M 48.40M 42.38M 42.98M

Table S3. Number of model parameters for different approaches.

MinVIS [22], and SeqFormer [51]. We use slightly more
parameters than Mask2Former-VIS [8], due to the learnable
relative positional encodings.
Hyper-Parameters. We now discuss the hyper-parameters
used in this work. In all experiments, the maximum number
of objects (N ) in a given video for a R50 backbone is 100,
and for a Swin-L backbone is 200. We use a feature dimen-
sion C (Sec. 3.1) of 256 in all models. We trained the models
with an initial learning rate of 0.0001 and ADAMW [33] op-
timizer with a weight decay of 0.05. We use a batch size of
8 for T = 2. For video instance segmentation, the networks
were first initialized with weights from Mask2Former [9]
trained on the COCO image instance segmentation dataset.
We then fine-tune the model using the training procedure
discussed in Sec. B on the respective Youtube-VIS or OVIS
datasets for 10, 000 iterations. For KITTI-MOTS and MOTS
2020, we use the same setting for 6, 000 iterations. For the
video panoptic segmentation task, we initialize the network
with Mask2Former weights trained on Cityscapes image
panoptic segmentation. We fine-tune the model for 10, 000
iterations.
Resources. We used 4 NVIDIA A100 and 8 V100 GPUs to
run the experiments presented in this paper. Each experiment
took roughly 8 GPU hours of training on the A100 GPUs for
VIS and VPS and 5 GPU hours for MOTS.
Licenses. Our code is built on Mask2Former [9] which is
majorly licensed under the MIT license, with some portions
under the Apache-2.0 License. The Youtube-VIS datasets are
licensed under a Creative Commons Attribution 4.0 License.
The OVIS dataset, Cityscapes-VPS and MOTS datasets are
released under the Attribution-NonCommercial-ShareAlike
(CC BY-NC-SA) License.
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